

## Available online at www.sciencedirect.com



Catalysis Today 91-92 (2004) 27-31



# Modification of active catalytic sites with N<sub>2</sub>O and CO<sub>2</sub> as gas promoters during oxidation reactions

O. Demoulin, F. Dury, M. Navez, E.M. Gaigneaux, P. Ruiz\*

Unité de catalyse et de chimie des matériaux divisés, Université catholique de Louvain, Croix du Sud 2/17, 1348 Louvain-la-Neuve, Belgium

Available online 30 April 2004

#### Abstract

The influence of adding  $300 \, \text{ppm}$  of  $N_2O$  in the feed during the oxidative dehydrogenation of propane and 3% of  $CO_2$  during the oxidation of methane was studied using a mixture of  $NiMoO_4$  and  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub>, and a palladium supported on a mixed Zr-Ce-O oxide catalyst, respectively. In both cases, the selective sites are modified by the presence of the gas dopes. With  $N_2O$ , the selectivity to propylene increases, while the conversion of both propane and oxygen and the yield in  $CO_2$  decreases.  $N_2O$  promotes the reduction of molybdenum.  $CO_2$  promotes total oxidation of methane. The dissociation of  $CO_2$  seems to be responsible for this promotion. The adjustment of the concentration of  $N_2O$  and  $CO_2$  thus clearly appears as a promising tool to improve the selectivity of partial oxidation products and the energetic efficiency in combustion. © 2004 Elsevier B.V. All rights reserved.

Keywords: Oxidation reaction; Gas dopes; Dynamic processes in catalysis; CO2; N2O

## 1. Introduction

Dynamic aspects have to be taken into account in the design of processes, in the modelling of the kinetics and in the design of catalysts [1]. The catalytic sites change in number under the conditions of reaction. Selectivity is correlated with the oxidation state of sites during the catalytic reaction. It is very difficult to maintain, in a controlled manner, the surface in a desired oxidation state without modifying the operating conditions (ratio of the partial pressures of oxygen and hydrocarbon in the gas feed, temperature, catalysts formulations, etc.). A new and promising approach to master the dynamic phenomena at the surface of oxides at work consists in the addition of gaseous dopes in the reaction gas feed. The efficiency of the reactor operation could be improved by injecting adequate amounts of dopes either in the feed or in different sections along the catalyst bed. This method is very attractive because it can be directly applied under presently operating reactors without any modification in the process. However, fundamental studies published in order to explain the role of these promoters in oxidation reactions are scarce. A more detailed experimental approach

is thus required in order to understand their exact role during the catalytic reactions. In previous papers, investigating the oxidative dehydrogenation of propane on NiMoO<sub>4</sub> catalysts in the presence of CO<sub>2</sub> and N<sub>2</sub>O used as dopes, we have shown that CO<sub>2</sub> maintains Mo in a higher oxidation state [2,3]. On the contrary, N<sub>2</sub>O inhibits such oxidation, promoting the reduction to Mo<sup>5+</sup>. CO<sub>2</sub> increases conversion and, thus, favours non selectivity; on the contrary, N<sub>2</sub>O decreases conversion and increases selectivity. In both cases, the consumption of oxygen decreases. Contrarily to what is traditionally believed, CO<sub>2</sub> is not inert in the oxidation reaction. Oxygen species produced by its dissociation can modify the oxidation state of the atoms on the surface of the catalysts and can directly participate in the oxidation of the hydrocarbon [2–4].

In this paper, the scope of previous results is extended: (i) study of the role of  $N_2O$  in the oxidative dehydrogenation of propane in the presence of a different catalyst, namely a complex biphasic catalyst (NiMoO<sub>4</sub> mechanically mixed with  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub>) and (ii) investigation of the influence of CO<sub>2</sub> in the total combustion of methane. The first system has been considered because it was previously demonstrated that  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> controls the number of selective sites (probably via spillover oxygen) of active oxide phases during the oxidation reaction [1]. The second system is studied because, in catalytic combustion reactions, a high amount of CO<sub>2</sub> is

<sup>\*</sup> Corresponding author. Tel.: +32-10-47-3597; fax: +32-10-47-3649. *E-mail address:* ruiz@cata.ucl.ac.be (P. Ruiz).

produced during the reaction and it has been thus suggested that CO<sub>2</sub> would act as an inhibitor of the reaction [5]. Catalysts were characterised by BET, XRD and XPS.

# 2. Experimental

# 2.1. Preparation of catalysts

Nickel molybdate was prepared by precipitation of a solution containing nickel nitrate and ammonium heptamolybdate following a procedure described elsewhere [2,3]. Two different batches (Batch A and B) were used.  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> was obtained by calcination of Sb<sub>2</sub>O<sub>3</sub> under static air at 773 K overnight. The mixture of NiMoO<sub>4</sub> and  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> was obtained mixing mechanically 50 wt.% of each oxide in a suspension of *n*-pentane and then dried at 383 K overnight. No calcination was performed with the mixture.

The ceria-zirconia mixed oxides supports were synthesised by the citrate method, which is fully detailed in [6]. Compounds such as  $Ce_{0.37}Zr_{0.63}O_2$ ,  $Ce_{0.70}Zr_{0.30}O_2$  and  $Ce_{0.91}Zr_{0.09}O_2$  were prepared in this way. These supports were then impregnated with a palladium containing solution  $(Pd(NH_3)_4Cl_2\cdot H_2O)$  by the wetness incipient method [7].

# 2.2. Catalytic test

# 2.2.1. Test in the presence and absence of $N_2O$

Oxidative dehydrogenation of propane (ODP) was performed in a conventional pyrex fixed-bed micro-reactor (i.d. = 8 mm) operated at atmospheric pressure with catalyst powder (particles diameter between 200 and 315 µm, 250, 500 or 1000 mg). Both the concentrations of O2 and propane in the feed were 10 vol.%. Helium was the carrier gas. The total flow rate was set at 30 ml/min. Catalytic activity was measured in the absence and in the presence of 300 ppm of N<sub>2</sub>O introduced as gas dope in the feed. The flow of He was balanced so as to ensure that the total gas flow remained unchanged. Temperature was 723 K. Analysis of reactants and products was performed by on-line gas chromatography [3]. The measured performances were accurate within ranges of about 1% (in relative) for the conversions of propane and oxygen and within ranges of about 8% (in relative) for the yields in propylene and CO<sub>2</sub>. The range of accuracy on the selectivity was thus about 10% (in relative).

#### Table 1 Catalytic activity results

| Test | Catalysts                                                                                             | N <sub>2</sub> O (%) | XC3 (%)             | YC3= (%)         | SC3= (%)           | <i>X</i> O <sub>2</sub> (%) | YCO <sub>2</sub> (%) | SCO <sub>2</sub> (%) |
|------|-------------------------------------------------------------------------------------------------------|----------------------|---------------------|------------------|--------------------|-----------------------------|----------------------|----------------------|
| 1 2  | NiMoO <sub>4</sub> (250 mg)<br>NiMoO <sub>4</sub> + $\alpha$ -Sb <sub>2</sub> O <sub>4</sub> (500 mg) | 0                    | 12.8<br>6.9 (-46.0) | 3.8<br>3.0 (-21) | 29.7<br>43.0 (+45) | 45.4<br>27.0 (-41)          | 6.8<br>2.7 (-60)     | 52.9<br>38.4 (-27)   |

ODP on pure NiMoO<sub>4</sub> (Batch A) and on NiMoO<sub>4</sub> +  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> mixture in the absence of N<sub>2</sub>O. Temperature 723 K. In all cases propane 10%, oxygen 10% and balance helium. X = conversion, Y = yield. S = selectivity. In parenthesis, changes in comparison with tests without  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub>.

## 2.2.2. Test in the presence and absence of $CO_2$

Combustion of methane was performed in a conventional fixed-bed micro-reactor (stainless steel:  $i.d. = 8 \,\mathrm{mm}$ ) operated at atmospheric pressure, into which the catalyst (particles diameter between 100 and 315 µm, 320 mg) was introduced. The total flow rate of the reactants mixture was 100 ml/min and helium was used as carrier gas. Two kinds of tests were performed: (1) using 1 ml/min of CH<sub>4</sub>, 10 ml/min of O2, balanced with He (89 ml/min) and (2) test in the presence of 3% of CO<sub>2</sub> in the gaseous reactants feed with  $1 \text{ ml/min of } CH_4$ ,  $10 \text{ ml/min of } O_2$  and  $3 \text{ ml/min of } CO_2$ , balanced with He (86 ml/min). The reaction was run between 473 and 723 K. The analysis of reactants and products was performed by on-line gas chromatography. The measured performances were accurate within a range of about 1% (in relative) for the conversions of methane and oxygen and within a range of about 4% (in relative) for the yields in  $CO_2$ .

# 3. Results

# 3.1. Catalytic performances

# 3.1.1. Addition of $N_2O$ in the feed

Pure  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> is completely inert. In both tests, the amount of NiMoO<sub>4</sub> is the same. Compared to the results observed using pure NiMoO<sub>4</sub>, it is observed that the addition of  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> induces an important modification in the catalytic performances of NiMoO<sub>4</sub> (Table 1): (i) a significant decrease in the conversion of propane (-46%), (ii) a decrease in the yield in propylene (-21%), (iii) a strong increase in the selectivity of propylene (+45%), (iv) a significant decrease in the conversion of oxygen (-41%), (v) an important decrease in the yield of CO<sub>2</sub> (-60%) and in the selectivity in CO<sub>2</sub> (-27%). Clearly,  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> inhibits non-selective sites, increasing the selectivity.

Taking into account the precision in the measurements, introduction of  $N_2O$  in the feed produces significant changes. When compared with the mixture of NiMoO<sub>4</sub> +  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> tested in the absence of dope, addition of 300 ppm  $N_2O$  in the feed induces (Table 2): (i) a weak decrease in the conversion of propane (-13%), (ii) a decrease in the yield of CO<sub>2</sub> (-22%) and (iii) a decrease in the conversion of oxygen (-21%). The yield (-3.2%) and the selectivity (+8%) in propylene and the selectivity in CO<sub>2</sub> (-9%) remain unchanged. For pure NiMoO<sub>4</sub>, addition of 300 ppm

Table 2 Catalytic activity results

| Test | Catalysts                                                                          | N <sub>2</sub> O | XC3 (%)    | YC3= (%)   | SC3= (%)   | XO <sub>2</sub> (%) | YCO <sub>2</sub> (%) | SCO <sub>2</sub> (%) |
|------|------------------------------------------------------------------------------------|------------------|------------|------------|------------|---------------------|----------------------|----------------------|
| 3    | $\frac{\text{NiMoO}_4 + \alpha\text{-Sb}_2\text{O}_4}{(1000 \text{mg})}$           | 0%               | 9.3        | 3.2        | 34.6       | 24.9                | 2.3                  | 24.2                 |
| 4    | NiMoO <sub>4</sub> + $\alpha$ -Sb <sub>2</sub> O <sub>4</sub><br>mixture (1000 mg) | 300 ppm          | 8.1 (-13)  | 3.1 (-3.2) | 37.5 (+8)  | 19.7 (-21)          | 1.8 (-22)            | 22.0 (-9)            |
| 5    | $NiMoO_4$ (250 mg)                                                                 | 0%               | 14.6       | 2.7        | 18.3       | 38.7                | 3.4                  | 23.2                 |
| 6    | NiMoO <sub>4</sub> (250 mg)                                                        | 300 ppm          | 12.4 (-15) | 3.0 (+11)  | 24.2 (+32) | 31.5 (-19)          | 2.7(-21)             | 21.4 (-8)            |

ODP on pure NiMoO<sub>4</sub> and on NiMoO<sub>4</sub> +  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> mixture in the absence and in the presence of 300 ppm of N<sub>2</sub>O. NiMoO<sub>4</sub> is from Batch B. Temperature 723 K. In all cases propane 10%, oxygen 10% and balance helium. X = conversion, Y = yield. S = selectivity. In parenthesis, changes when comparing tests with and without  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> and in the presence and absence of N<sub>2</sub>O. Numbers in parenthesis correspond to the difference of performances compared to the previous line (test).

 $N_2O$  leads to (Table 2): (i) a decrease in the conversion of propane (-15%), (ii) an increase in the selectivity to propylene (+32%), (iii) a decrease in both the conversion of oxygen (-19%) and the yield of  $CO_2$  (-21%).

A lack in the carbon balance was observed. The sum of percentages of selectivity to propylene and  $CO_2$  is in general about 80%. However, in some cases, values as low as 50% were observed. The values of selectivity in propylene are in the average of values observed in the literature for the ODP on oxide catalysts with this degree of conversion. A lack in the oxygen balance was also observed. Both results suggest that some propane is probably converted into an oxygenated product. No coke formation was observed. The high consumption of oxygen could confirm this fact. We have not observed CO formation during analysis. In fact, CO is easily oxidised to  $CO_2$  on  $NiMoO_4$  catalysts. A small

peak which was identified as acrolein was observed, both in the absence and in the presence of  $N_2O$ . However the area of this peak was not reproducible enough and very difficult to quantify. Experiments have been performed under low conversion of propane, making the analysis of products more difficult. Other possibilities are the formation of an alcohol, an acid, an aldehyde, etc. As the main aim of our investigation was to study changes in conversion, yield and selectivity of the products due to the introduction of  $N_2O$  during the catalytic reaction, we have not insisted further in their identification.

# 3.1.2. Addition of $CO_2$ in the feed

The addition of 3% of CO<sub>2</sub> into the gaseous feed leads to an increase of the catalytic activity of the various catalysts tested. Indeed, as shown in Fig. 1, the methane conversion

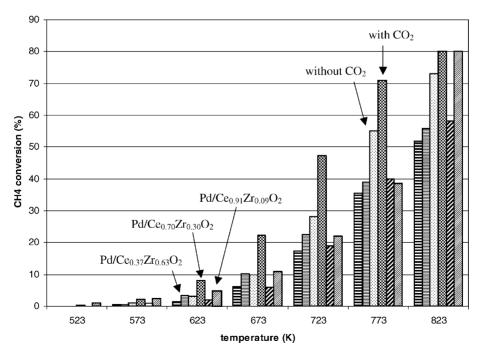



Fig. 1. Conversion of methane as a function of the temperature for palladium catalysts supported on ceria-zirconia mixed oxides. Horizontal lines represent the activity of  $Pd/Ce_{0.37}Zr_{0.63}O_2$  catalyst, points are dedicated to the activity of  $Pd/Ce_{0.70}Zr_{0.30}O_2$  catalyst and oblique lines are used for the activity of  $Pd/Ce_{0.91}Zr_{0.09}O_2$ . Spaced histograms figure the activity of those catalysts in the absence of  $CO_2$  while the packed ones represent their activity in the presence of 3% of  $CO_2$  in the reactants feed.

was higher for every catalyst in the presence of  $CO_2$  at any temperature, except at 773 K for the palladium supported on  $Ce_{0.91}Zr_{0.09}O_2$  mixed oxide, where the conversion remained unchanged. In terms of  $T_{50}$  values (temperature necessary to reach 50% of methane conversion), it appears that the addition of  $CO_2$  allows to decrease this value by 10 K in the case of  $Pd/Ce_{0.37}Zr_{0.63}O_2$  (808 K versus 818 K) and  $Pd/Ce_{0.91}Zr_{0.09}O_2$  (788 K versus 798 K) and even by 35 K for the  $Pd/Ce_{0.70}Zr_{0.30}O_2$  catalyst (728 K versus 763 K).

#### 3.2. Characterisation of the catalysts

# 3.2.1. Addition of $N_2O$ in the feed

Principal conclusions of these analyses are: (i) the fresh NiMoO<sub>4</sub> sample has a specific area value of 58 m<sup>2</sup>/g. After the catalytic reactions in the presence or absence of N<sub>2</sub>O, the specific area of NiMoO<sub>4</sub> drops very similarly for all tests to about 39 m<sup>2</sup>/g. The surface area of  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> (1 m<sup>2</sup>/g) remains unchanged after test. XRD patterns are the same, independently of the presence or absence of N<sub>2</sub>O. The XPS results indicated that the binding energies are (almost) identical for the fresh NiMoO<sub>4</sub>, α-Sb<sub>2</sub>O<sub>4</sub>, the mixture and the samples recovered after catalytic test. Ni/Mo XPS atomic ratio = 1.18, indicated an enrichment of the surface in Ni. The fresh NiMoO<sub>4</sub> and the NiMoO<sub>4</sub>+ $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> mixture were fully oxidised (no Mo<sup>5+</sup> is observed). There is no indication of carbide species of Ni or of Mo formed at the surface of the NiMoO<sub>4</sub> catalysts during the test. No significant differences in the atomic ratios were observed between the samples. A significant difference concerns the oxidation state of Mo. Mixtures are reduced after reaction. Indeed, XPS analysis showed that the quantity of Mo<sup>6+</sup> decreases and that of  $Mo^{5+}$  increases in the presence of  $N_2O$ . For the  $NiMoO_4$ and the mixture recovered after the addition of 300 ppm of  $N_2O$ , the amount of  $Mo^{5+}$  was about 0.3% of the total Mo. This suggests that, in the presence of N<sub>2</sub>O, molybdenum is slightly reduced. More details can be found in [3].

# 3.2.2. Addition of $CO_2$ in the feed

XRD analyses are the same for catalysts in the presence and in the absence of  $CO_2$ . The BET surface area also remains unchanged. The XPS analyses of the samples after test, both with and without the addition of 3% of  $CO_2$  into the feed, did not show any difference either in the binding energies (BE) of the different elements or in the Pd/(Ce+Zr)

ratio. No carbide compounds were observed. However, interesting information comes from the analysis of the O 1s peak. Two kinds of oxygen O 1s species could be detected at the surface of the ceria-zirconia mixed oxide catalysts. The first one (low BE) is centred at around 529.5 eV and would be bound to Ce atoms whereas the other one (high BE) is located above 530.5 eV and is probably linked to other atoms like C or Zr. After reaction in the presence of CO<sub>2</sub>, the proportion of low BE O 1s species seems to increase (between 3 and 17.5%) (Table 3). It is worth noting that this enhancement is more important on the most activated system by the presence of CO<sub>2</sub>, i.e. the Pd/Ce<sub>0.70</sub>Zr<sub>0.30</sub>O<sub>2</sub> (about 20%). Similar conclusion is obtained if the amount of these low BE O 1s species is reported to the overall metallic content of the support.

## 3.3. Interpretation of the catalytic test

## 3.3.1. Addition of $N_2O$

The results observed with the mixture  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub>+NiMoO<sub>4</sub> are similar and confirm those observed with pure NiMoO<sub>4</sub>. Under N<sub>2</sub>O, molybdenum in NiMoO<sub>4</sub> works in a slightly more reduced state (XPS: presence of Mo<sup>5+</sup>). Under these conditions, the catalyst is more selective. We have suggested that N<sub>2</sub>O inhibits the adsorption of O<sub>2</sub>, so limiting the oxidation rate of the catalysts [3,4]. This would account for the decrease in propane conversion, in O2 consumption and in the yield in  $CO_2$  observed in the mixture. When  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub> is added to pure NiMoO<sub>4</sub> or when N<sub>2</sub>O is introduced in the feed with pure NiMoO<sub>4</sub> (Tables 1 and 2), it is observed that the selectivity to propylene increases, the conversions of propane and of oxygen decrease and the yield in CO<sub>2</sub> decreases. These results could indicate that  $\alpha\text{-Sb}_2O_4$  and N2O could probably play the same role, namely, controlling the selectivity of NiMoO<sub>4</sub> during the reaction, inhibiting non-selective sites. Previous studies [1] demonstrated that, working with pure molybdenum oxide (MoO<sub>3</sub>), the key to maintain high catalytic performances (high selectivity in partial oxidation, low formation of CO<sub>2</sub>) is to stabilise the surface of molybdenum oxide in a sub-oxide close to the stoichiometry of Mo<sub>18</sub>O<sub>52</sub>. This reduced state can be obtained when α-Sb<sub>2</sub>O<sub>4</sub> is present in contact with MoO<sub>3</sub>. Mars-van Krevelen mechanism considers that the hydrocarbon is oxidised incorporating oxygen from the outermost layer of the oxide, the oxide becoming reduced as a consequence.

XPS results of various catalysts after test, both in the absence  $(CH_4/O_2/He = 1/10/89, v/v/vv)$  and in the presence of 3% of  $CO_2$  in the reactants mixture  $(CH_4/O_2/CO_2/He = 1/10/3/86 v/v/v/v)$ 

|                                                         | Low BE O 1s/O (%)       |                            | Low BE O 1s/(Ce + Zr)   |                            |  |
|---------------------------------------------------------|-------------------------|----------------------------|-------------------------|----------------------------|--|
|                                                         | Without CO <sub>2</sub> | With 3% of CO <sub>2</sub> | Without CO <sub>2</sub> | With 3% of CO <sub>2</sub> |  |
| Pd/Ce <sub>0.70</sub> Zr <sub>0.30</sub> O <sub>2</sub> | 46.4                    | 54.5 (+17.5)               | 1.67                    | 2.02 (+21.0)               |  |
| $Pd/Ce_{0.91}Zr_{0.09}O_2$                              | 53.6                    | 55.7 (+4.0)                | 2.16                    | 2.31 (+7.0)                |  |
| $Pd/Ce_{0.37}Zr_{0.63}O_{2}$                            | 51.8                    | 53.2 (+3.0)                | 1.26                    | 1.25 (0.0)                 |  |

Low BE O 1s = 529.5 eV. In parenthesis, change due to the introduction of  $CO_2$ , in %.

Molecular oxygen from the reaction gas then reoxidises the catalytic surface. It is well-established that, in general, the reoxidation step of the cycle is slower than the reduction one. Hence, the surface gets globally reduced with successive catalytic cycles. Pure MoO<sub>3</sub> undergoes a deep reduction and loss of activity. In the presence of α-Sb<sub>2</sub>O<sub>4</sub>, selectivity increases. The role of α-Sb<sub>2</sub>O<sub>4</sub> is to irrigate the surface of MoO<sub>3</sub> with spillover oxygen which facilitates the oxidation of the surface of MoO<sub>3</sub> after incorporation of its oxygen atoms in oxidation products. During reaction MoO3 in mixture with α-Sb<sub>2</sub>O<sub>4</sub> is composed of a core of MoO<sub>3</sub> and a superficial layer possessing the stoichiometry of weakly reduced Mo (Mo<sub>18</sub>O<sub>52</sub>) [1]. Taking these results into account, it could be suggested that the role of N2O could be the same. N<sub>2</sub>O also facilitates the reduction of the surface of the molybdenum. But the mechanism by which the reduction of the catalysts is adjusted seems to be different. It could be suggested that N<sub>2</sub>O inhibits the adsorption of oxygen on NiMoO<sub>4</sub>, so promoting reduction. These results support the fact that a more reduced oxidation state of atoms at the surface of the catalysts could increase selectivity and that this state could be obtained by adding an oxide phase, which produces spillover oxygen or by adding N2O as gas dope in the feed. The fact that there is no significant increase in the selectivity to propylene when N<sub>2</sub>O is fed in the mixture of NiMoO<sub>4</sub> and α-Sb<sub>2</sub>O<sub>4</sub> is coherent with this picture. In the mixture, the selectivity is already largely modulated by  $\alpha$ -Sb<sub>2</sub>O<sub>4</sub>.

## 3.3.2. Addition of $CO_2$

The presence of some CO<sub>2</sub> in the feed allows the reaction of catalytic combustion of methane, on palladium supported on ceria-zirconia mixed oxide catalysts, starting at lower temperatures than what is observed in the absence of CO<sub>2</sub>. XPS results seem to give an attempt of explanation for this activation in the presence of CO<sub>2</sub>. According to the XPS results, there is an enrichment in low BE oxygen species of the ceria-zirconia compound when CO<sub>2</sub> is present. As a preliminary explanation, it could be suggested that these oxygen species would come from the dissociation of some CO<sub>2</sub> molecules at the surface of the catalyst, which furnishes some activated monoatomic oxygen species (O\*) which, in turn, could either help to oxidise the CH<sub>4</sub> molecules or improve the oxidation rate of catalysts by modifying its oxidation state and increasing the overall activity of the catalyst. Indeed, it has recently been shown, using Raman spectroscopy under operando conditions, that, in the case of Pd/Al<sub>2</sub>O<sub>3</sub> catalysts, the most active catalyst is obtained when palladium is working in a highly oxidised state [7]. One should notice that the enhancement in low BE oxygen species is more important on the most activated system by the presence of CO<sub>2</sub> (Pd/Ce<sub>0.70</sub>Zr<sub>0.30</sub>O<sub>2</sub>). This last observation seems to support our interpretation. However this observation has to be verified further. The observed effect of  $CO_2$  could be in contradiction with previous results presented in the literature [5,8] which showed that  $CO_2$  does not modify the catalytic performances of  $Pd/\alpha$ -Al $_2O_3$  catalysts. The explanation of this apparent contradiction is that the role of  $CO_2$  depends on the nature of the catalysts (more precisely on the nature of the support), as is discussed elsewhere [9]. The important point to underline is that  $CO_2$  could be used to improve the efficiency of catalytic combustion and, thus, the energetic efficiency. This is a very new result, not yet published up to now.

## 4. Conclusions

The oxidation state of the catalysts can be tuned by adding small amounts of gas dopes in the reaction feed. The adjustment of the concentrations of  $N_2O$  and  $CO_2$  thus clearly appears as a promising tool to modify the number of selective sites, to improve selectivity of partial oxidation products and to improve combustion of methane.

# Acknowledgements

The authors gratefully acknowledge the "Direction Générale des Technologies, de la Recherche et de l'Energie" of the "Région Wallonne" (Belgium), the "Fonds pour la Formation à la Recherche dans l'Industrie et l'Agriculture (FRIA)" (Belgium) and the "Fonds National de la Recherche Scientifique (FNRS)" of Belgium for their financial support for grants and for the acquisition of the XPS and XRD equipments. EMG is a Research Associate of the FNRS.

# References

- E.M. Gaigneaux, H.M. Abdel Dayem, E. Godard, P. Ruiz, Appl. Catal. A: Gen. 202 (2000) 265–283.
- [2] F. Dury, E.M. Gaigneaux, P. Ruiz, Appl. Catal. A: Gen. 242 (2003) 187–203.
- [3] F. Dury, M.A. Centeno, E.M. Gaigneaux, P. Ruiz, Appl. Catal. A: Gen. 247 (2003) 231–246.
- [4] F. Dury, M.A. Centeno, E.M. Gaigneaux, P. Ruiz, Catal. Today 81 (2) (2003) 95–105.
- [5] D. Ciuparu, E. Altman, L. Pfefferle, J. Catal. 203 (2001) 64-74.
- [6] O. Demoulin, J.L. Mugabo, M. Navez, P. Ruiz, Appl. Catal. B: Environ., in preparation.
- [7] O. Demoulin, M. Navez, E.M. Gaigneaux, P. Ruiz, A.-S. Mamede, P. Granger, E. Payen, Phys. Chem. Chem. Phys. 5 (2003) 4394–4401.
- [8] R. Burch, P.J. Urbano, P.K. Loader, Appl. Catal. A: Gen. 123 (1995) 173–184.
- [9] O. Demoulin, M. Navez, F. Gracia, E.E. Wolf, P. Ruiz, Catal. Today, submitted for publication.